22,558 research outputs found

    Probing Gravitational Dark Matter

    Full text link
    So far all evidences of dark matter (DM) come from astrophysical and cosmological observations, due to gravitational interactions of the DM. It is possible that the true DM particle in the universe joins gravitational interactions only, but nothing else. Such a Gravitational DM (GDM) acts as a weakly interacting massive particle (WIMP), which is conceptually simple and attractive. In this work, we explore this direction by constructing the simplest scalar GDM particle χs\chi_s. It is a Z2Z_2 odd singlet under the standard model (SM) gauge group, and naturally joins the unique dimension-4 interaction with Ricci curvature, ξsχs2R\xi_s \chi_s^2 R, where ξs\xi_s is the dimensionless nonminimal coupling. We demonstrate that this gravitational interaction ξsχs2R\xi_s \chi_s^2 R, together with Higgs-curvature nonminimal coupling term ξhH†HR\xi_h H^\dag H R, induces effective couplings between χs2\chi_s^2 and SM fields which can account for the observed DM thermal relic abundance. We analyze the annihilation cross sections of GDM particles and derive the viable parameter space for realizing the DM thermal relic density. We further study the direct/indirect detections and the collider signatures of such a scalar GDM. These turn out to be highly predictive and testable.Comment: 33pp, JCAP Final Version. Only minor rewordings, references adde

    Consistency between dynamical and thermodynamical stabilities for perfect fluid in f(R)f(R) theories

    Full text link
    We investigate the stability criterions for perfect fluid in f(R)f(R) theories which is an important generalization of general relativity. Firstly, using Wald's general variation principle, we recast Seifert's work and obtain the dynamical stability criterion. Then using our generalized thermodynamical criterion, we obtain the concrete expressions of the criterion. We show that the dynamical stability criterion is exactly the same as the thermodynamical stability criterion. This result suggests that there is an inherent connection between the thermodynamics and gravity in f(R)f(R) theories. It should be pointed out that using the thermodynamical method to determine the stability for perfect fluid is simpler and more directly than the dynamical method.Comment: 18page

    Binary Nonlinearization of the Super Akns System Under an Implicit Symmetry Constraint

    Full text link
    For the super AKNS system, an implicit symmetry constraint between the potentials and the eigenfunctions is proposed. After introducing some new variables to explicitly express potentials, the super AKNS system is decomposed into two compatible finite-dimensional super systems (x-part and tnt_n-part). Furthermore, we show that the obtained super systems are integrable super Hamiltonian systems in supersymmetry manifold R4N+2∣2N+2\mathbb{R}^{4N+2|2N+2}.Comment: 10 pages, 5 figures, to appear in Journal of Physics

    Thermodynamical stability for perfect fluid

    Full text link
    According to maximum entropy principle, it has been proved that the gravitational field equations could be derived by the extrema of total entropy for perfect fluid, which implies that thermodynamic relations contain information of gravity. In this manuscript, we obtain a criterion for thermodynamical stability of an adiabatic, self-gravitating perfect fluid system by the second variation of total entropy. We show, for Einstein's gravity with spherical symmetry spacetime, that the criterion is consistent with that for dynamical stability derived by Chandrasekhar and Wald. We also find that the criterion could be applied to cases without spherical symmetry, or under general perturbations. The result further establishes the connection between thermodynamics and gravity.Comment: 10 page
    • …
    corecore